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Context and Motivation

• LP-WANs for large scale IoT communication in urban areas 
• Low power consumption 

• Large coverage (few Km) 
• No costly license 

• Private LoRa deployments 
• Inherent heterogeneity and poor dimensioning 

• Leverage multipath to extend communication range in both directions 
• Requires an accurate and precise localization based system 

• Leverage chirp spreading spectrum to provide robust localization
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LoRa Physical Layer

• Chirp spread spectrum 

https://electronics.stackexchange.com/questions/278192/understanding-the-relationship-between-lora-chips-chirps-symbols-and-bits K4
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Spreading Factor (SF)

• BW = fmax – fmin  

• 2SF chips per symbol  

• Chip duration  = 1/BW fixed for a given BW 

• Symbol rate = Chip rate / 2SF, Symbol duration = 2SF / BW 

• Unmodulated chirp: 2SF chips with frequency increasing from fmin to  fmax in steps of 
BW/ 2SF 

• Modulated chirp: 2SF chips, but frequency increases from fmin + △f to fmax then 
recycles from fmin up  

• Frequency shift △f = the value of SF raw information bits 

• SF: number of raw information bits per symbol
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Spreading Factor and Range

7 8 9 10 11 12

For a given bandwidth : Higher SF = Higher time on air, Lower 
Packet Error Rate, Longer Coverage (but Lower Symbol rate) K7



LoRa Range Measurement: Scenario 

LoRa 4G

End device: 
(LEAT board)

Gateway: 
(LoRa Lite Gateway)

Net & App Server: 
The Things Network 
(TTN)
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LoRa Range Measurement:  
Position Labelling
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RSSI Measurement
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RSSI Measurement
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RSSI Measurement
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SNR Measurement
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SNR Measurement
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SNR Measurement
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LoRa Range Extension

• Charm1 enhances coverage of LPWANs by coherently combining 
signals coming from multiple gateways in a cloud infrastructure.  

• We propose to use a single MIMO gateway to extend the range of 
LPWANs for both the uplink and the downlink:  

• Uplink is enhanced by coherently combining signals coming from multiple 
antennas of the same gateway. 

• Downlink is improved by focusing the radiation pattern of the Tx towards the 
end device using the direction of arrival information.
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• TDoA techniques have relatively large error 

• Indoor environment 
• No GPS 
• Rich multipath 

• LoRa Chirp modulated signals provide time-frequency diversity 

• Take advantage of this diversity to perform opportunistic angle of 
arrival based localization 

• with no dedicated modules (GPS) 

• Combine localization with spatial filtering techniques to enhance 
extend the communication range
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LoRa Range Extension: Implementation

• Use of two SDR 2-antenna gateway (2Tx/ 2Rx) 

• GNURadio Software

Downlink

Uplink
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Beamforming for DL Range Extension

• With beamforming omnidirectional radiated signals are combined to 
form a higher gain beam to a certain direction 

• To control the direction of the beam, complex weights need to be 
adequately chosen on each one of the RF chains 

• Weights values are related to the position of the target 
• Need to estimate accurately the AOA of the signal radiated from the end 

devices in order to steer the Tx beam to the target’s direction  

• Beamforming can be performed by the LoRa gateway
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Beamforming: Delay and Sum
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Beamforming: Two RF Chains
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Coherent Combining for UL Range Extension

• Several RF chains and antennas are present at the MIMO gateway 

• Signal coming from the end-device suffers from multipath fading 

• Benefit from spatial diversity of antennas  

• Combine coherently different copies to obtain a better representation 
of the signal 

• The chosen approach: add delay to align the different copies  
• receiver beamforming 

• Same process as DL
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Coherent Combining: Simulation
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AoA Based Localization

• Gateways need to track end devices and update the steering angle 
• For DL beamforming 

• AoA estimation can be done at the MIMO gateway  

• Based on the relative phase between the signals received at the 
antenna array  (N = 2 in our case)
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• Compute the covariance matrix from the received signal IQ samples 
corresponding to K (very few) time samples 

• Taking advantage of the intrinsic diversity of chirp modulated signals 

• Eigen decomposition, signal and noise uncorrelation assumption 

• Eigen vectors corresponding to higher eigenvalues designate signal 

• MUSIC algorithm gives steering vectors related to signal 

• The estimated signal AoA correspond to peaks in the so-called 
pseudospectrum function
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System Evaluation

• Experimental set-up 
• MIMO gateway and an end node: 

custom SDR testbed based on 
GnuRadio 

• Two Ettus Research USRP B210 
equipped with 2-element Uniform 
linear arrays (VERT 900MHz 
antennas)
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Beamforming Gain 

• Corridor and meeting 
room environment 

• Avg power gain   
• corridor: 2 dB 
• meeting room: 2.70 dB 

• Impact of “through-the-
wall” transmission
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Coherent Combining Gain

• Signals impinging of the 2-
element antenna array 

• Avg power gain   
• corridor: 5.99 dB 
• meeting room: 5.81 dB 

• Factor 4 w.r.t. baseline 

• Same power gain across 
environments and 
conditions (LoS and NLoS)  
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AoA Estimation Precision

• Mean error: 
• office: 4.8° 

• corridor: 12.1° 
• meeting room: 11.2° 

• Longer distance : 
• Higher number of reflected 

signals 
• Higher estimation error  

• Error still relatively small 
• time-frequency diversity
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Conclusion

• Possible to leverage the time-frequency distribution of the LoRa signal 
to reduce AoA estimation error 

• without additional module 

• AoA estimation is done at the gateway  
• requires more antennas  

• preserves node battery 
• avoid Cloud based solutions 

• Beamforming and Coherent combining enhance DL and UL 
transmission range respectively
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Improved Localization in Wireless IoT 
Networks

réseaux dynamique multifonctions

physical layer network layer application layer
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I’LL WIN Project objectives

• Localization system in LPWAN IoT networks  
• Development of a miniature device adapted to be integrated into 

the target (LEAT) 

• Optimization of the network configuration to enhance estimation 
of the position (DIANA) 

• Develop reconfigurable LoRa nodes  
• Operating in either “node” or “gateway” mode  

• Development of a machine learning algorithm to improve the 
estimation (FBK Trento)
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