

Quantum simulator with hot atomic vapors (SQVAC)

RISE Academy P.Azam

20/03/2023

Photons propagation in a non-linear vapor

Non-Linear Schrödinger Equation

$$\mathrm{i}\frac{\partial\psi}{\partial z} = -\frac{1}{2k_0}\nabla_r^2\psi + k_0\Delta n\,\psi$$

Madelung transformation $\psi(\mathbf{r}, z) = \sqrt{\rho(\mathbf{r}, z)} e^{i\phi(\mathbf{r}, z)}$

2D Euler equations

Fluid's density

Fluid's velocity

 $\rho = |\psi|^2 = \mathbf{I} \qquad \mathbf{u} \propto \nabla \phi$

Wavefunction & Electric field equivalence

Detection of amplitude and phase of the field (equivalent of measuring the full wavefunction in situ)

This approach leeds to « Quantum fluids of light » and observations of precursor effects of wave condensation

Project idea

Fluid dynamic studies

Dissipation-enhanced collapse singularity of a nonlocal fluid of light in a hot atomic vapor

P. Azam, A. Fusaro, Q. Fontaine, J. Garnier, A. Bramati, A. Picozzi, R. Kaiser, Q. Glorieux, and T. Bienaimé, Phys. Rev. A 104, 013515 (2021).

Vortex creation, annihilation and dynamics in atomic vapor

P. Azam, A. Griffin, S. Nazarenko, R. Kaiser, Phys. Rev. A 105, 043510 (2022).

Comparison with numerical simulations

	Simulation	Experiment	Ratio
Energy		$E_{laser} = 70 \text{ Wh}$ $E_{oven} = 140 \text{ Wh}$	
	$E_{simu} = 80$ Wh	$E_{camera} = 30 \text{ Wh}$ $E_{monitoring} = 35 \text{ Wh}$	
		$E_{exp} = 275$ Wh	
Time	For a 1024×1024 matrix: 15 seconds a step	Measurement at a rate of ≈ 50 Hz	
		(set laser frenquency/intensity)	
		+ record output beam)	
$L/z_{NL} = 50$	$50 \text{ steps} \times 15 \text{s} = 12.5 \text{ min}$	$pprox {f 50 Hz}$	$\times 37500$
	$\Rightarrow 16.5 {f W}$	$ ightarrow 1.5 \mathrm{mW}$	$\times 11000$

Limitations of classical digital solutions

Moore's law

Reach physical limitations (size of a transistors) to keep doubling the number of transistors per processors each year

Energy cost

In 2019, it is responsible of 4 to 10% of the total greenhouse gases and it consumes 10 to 15% of the world electricity

Calculus time

Increase of complex tasks and calculus (as machine learning, thermodynamics simulations,...), time of calculation is non-negligeable

Analog computers: Specific problems / Solve faster / Lower energy cost

Extreme Learning Machine

Back-propagation

Reservoir computing

Feed forward

Pierangeli D., Marcucci G. & Conti C. (2021). Photonic extreme learning machine by free-space optical propagation. *Photonics Research*, 9(8), 1446-1454.

Principal advantage is the training speed

Our hardware is 2D — Image classification

Thank you for your attention