
Fast Computation of Shortest Smooth Paths and
Uniformly Bounded Stretch.
Margaux Schmied, David Coudert

We study the shortest smooth path problem, which is motivated by traffic-aware routing in road networks. The goal is to compute the fastest route according to the 
current traffic situation while avoiding undesired detours. For this we have examined the article by Tim Zeitz.
Example:
If we go from Nice to Paris (a long trip) we don't want to leave the highway to gain only 30 sec.

Intuitively, vertices on highways are more important than vertices on some rural 
street.

We contracted vertices successively by ascending importance. 
To contract a vertex means to temporarily remove it from the graph while inserting
shortcut arcs between more important neighbors to preserve shortest distances 
among them.

This preprocessing is applied for each algorithm.

• P a path
• w(P) the weight of a path P 
• Dw(v1,vk) the shortest distance between nodes v1 and vk

• Stretch of a path: Sw(P) = !(#)
%!(&", &#)

• Uniformly bounded stretch: UBSw(P) = max{0 ≤ i < j ≤ k} Sw(Pi, j)

A path P is ε-smooth with respect to a weight function w when UBSw(P) < 1 
+ ε. 

The algorithm repeats two steps until a valid path is found. 

• First step: The shortest path compared to the traffic is calculated by avoiding
blocked paths thanks to Dijkstra

• Second step: We check that each sub-path does not violate the UBS constraint. 
All violating subpaths are added to the blocked paths list

• Third step: We start again until we have a valid path

The idea is to focus on the validity of the path rather than calculating the 
exact UBS. 
We are looking for the shortest path in relation to the traffic from the 
source with Dijkstra as well as all the distances. 
Thus we can check that all the sub-paths are valid in constant time.

• First step: Find the shortest path with respect to traffic
• Second step: Replace each UBS violating subpath with the shortest path without

traffic
• Third step: We continue iteratively replacing the violating segments

Context

CH-Potentials Smooth Paths

Iterative path blocking (IPB)
Efficient UBS computation

Iterative path fixing (IPF)

This work has been supported by the French government, through the UCA DS4H Investments in the Future project managed by the 
National Research Agency (ANR) with the reference number ANR-17-EURE-0004.

Results

Results

The author of the article adapts the existing IPB-H algorithm. It outperforms
the original implementation by two orders of magnitude. Moreover, it
presents the necessary modifications to make the algorithm exact. IPB-E is
still about an order of magnitude faster than the CRP-based heuristic
implementation. As IPB-H and IPB-E are not always able to find solutions in 
reasonable time, it introduces another heuristic, IPF. It can still find smooth
paths even for random queries on massive continent-sized instances in 
tenths of milliseconds.

Summary

Average performance of our
implementations of IPB-E, IPB-H 
and IPF for different query sets 
on all instances with ϵ = 0.2. 

The Increase column denotes the length increase with respect to w∗ of 
the obtained path over OPTw∗ and includes only successful queries. The 
running time column also includes the running time of queries aborted
after 10 seconds.

Average
performance of our
implementations for 
different values of ϵ 
with 1h queries on 
OSM Europe with
synthetic live traffic. 
The Increase
column denotes the 
length increase with
respect to w* of the 
shortest smooth
path over the 
shortest w∗ path. It 
includes only values 
from successful
queries. 

All other columns indicate average values over all queries, including the ones
terminated after 10 seconds.

* Zeitz, Tim. "Fast Computation of Shortest Smooth Paths and Uniformly Bounded Stretch with Lazy RPHAST." 20th International Symposium on 
Experimental Algorithms (SEA 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.


