Network monitoring and troubleshooting from within the browser: a data-driven approach

Liberté Égalité Fraternité

Presented at the RISE Academy research forum

By Sanaa Ghandi, Chadi Barakat and Yassine Hadjadj-Aoul

Why web QoE problems persist ?

Causes

- Network congestion
- Wifi interference
- Device issues
- Network unavailability

For users

- Productivity loss: 70% of users abandon slow pages
- Negative experience: 50% of users report dissatisfaction while streaming

For providers

- Higher churn rate
 20–30%
- Increased support costs

How people handle QoE problems today?

Speedtests (Ookla, fasts.com)

Manual check

Wifi intereference

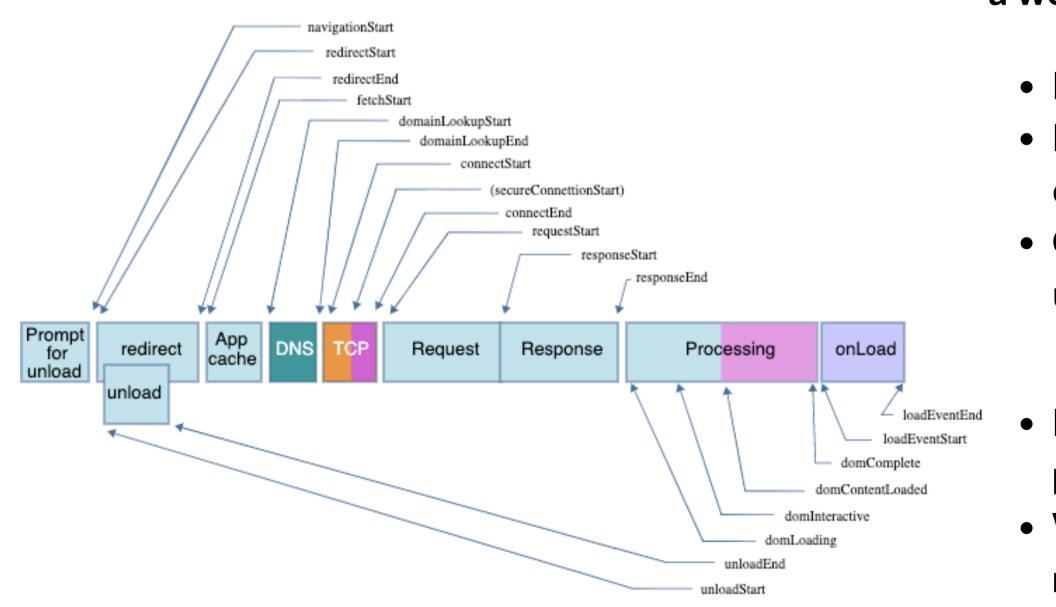
Reboot

- There is no general solution for network troubleshooting
- They are not accessible to everyone
- They can present a high learning curve

Time consuming

Problem specific

• The tools are often intrusive and inconsistent


The objectives of WEMON

Provide a general lightweight network troubleshooting solution :

Automated

- Non intrusive
- Lightweight
- Within the browser
- Fast
- User friendly

Can data within the browser be valuable? Our assumption is that browser contains

Reference: Navigation and resource timings

Url: https://developer.mozilla.org/en-US/docs/Web/Performance/Navigation and resource timings

- a wealth of data freely available
 - **Performance API:** rendering data • Network information API:
 - connection type
 - Chrome API: CPU usage, memory
 - usage
 - Does this data contain network problem signature? • Would it help to troubleshoot network problems?

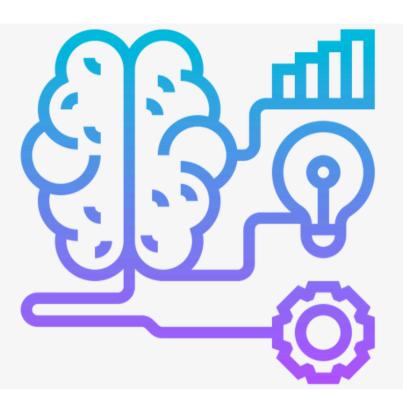
Our data-driven approach

INPUT AS DATA BROWSER RENDERING

CPU

NETWORK

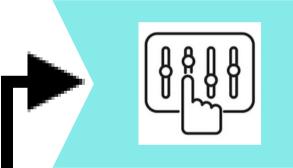
pageloadtime, ttfb, redirect, dns, connect, request, response, dom, domParse, domScripts, contentLoaded, domSubRes, load, RUMSpeedIndex

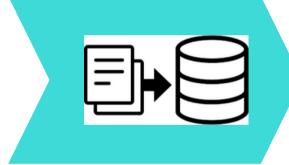

cpuName, cpuArch, cpuFeatures, cpuNumOfProcessors, systemCapacity, systemAvailableCapacity, delta_idle, delta_kernel, delta_total, delta_user

> effectiveType downlink rtt protocol

MACHINE LEARNING

OUTPUT


- Network performance **metrics**(Bandwidth, packet loss, $RTT\cdots)$
- Root cause analysis and troubleshooting
- Embedded in a browser extension


Dataset building by controlled experimentation

1.Controlled experimentation

2.Data collection from the browser

3.Ground truth measurement with specialized tools

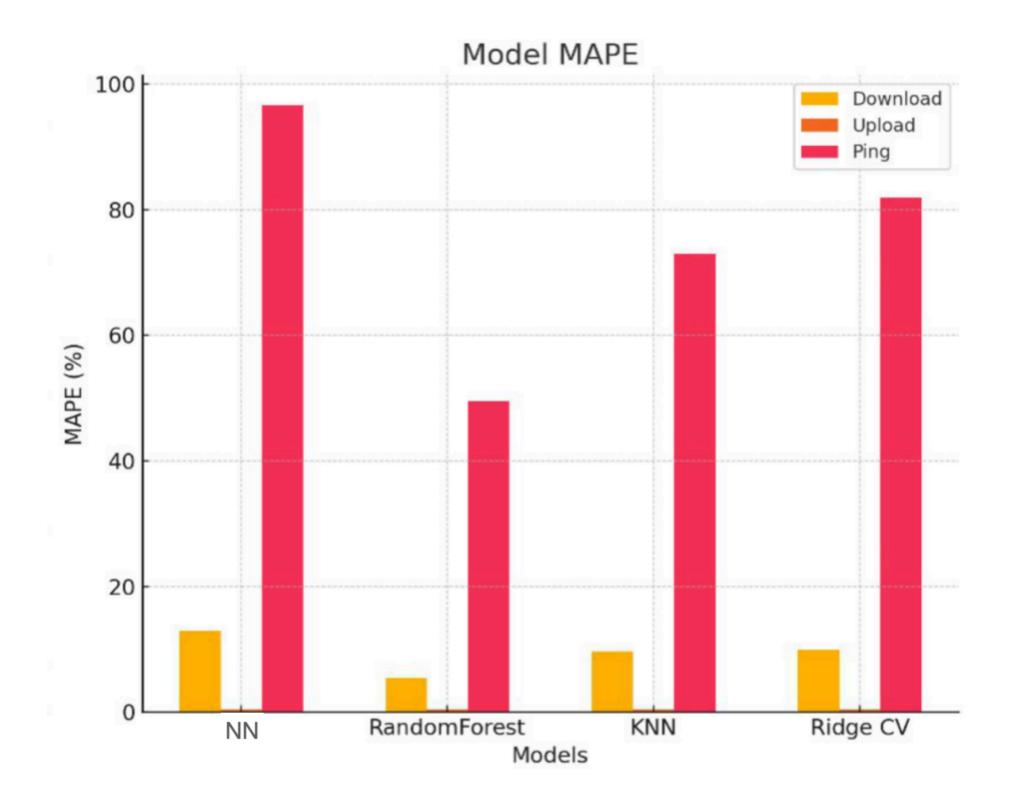
- Browsing under various network conditions
- Creating various datasets
- Collecting data using an extension
- Establishing accurate labels and benchmarks
- optimal parameters

4.Model calibration and training

5. Iterative improvement

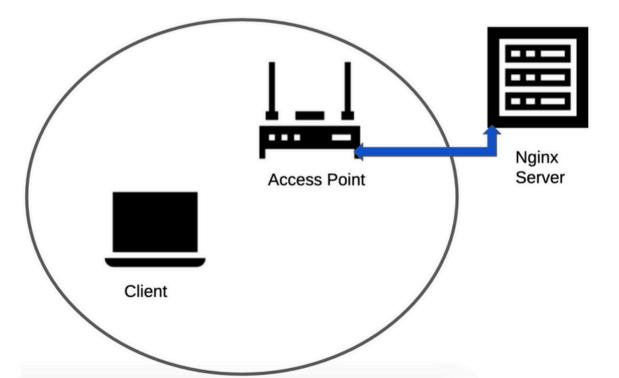
- Choosing the
 - model
- Finding the

Challenges


- Setting up the experimental platform
- Definition of scenarios
- Traffic generation
- Collection and labelling of the dataset
- Analysis of the accuracy and robustness of the ML models

Speedtest-like inference without packet injection

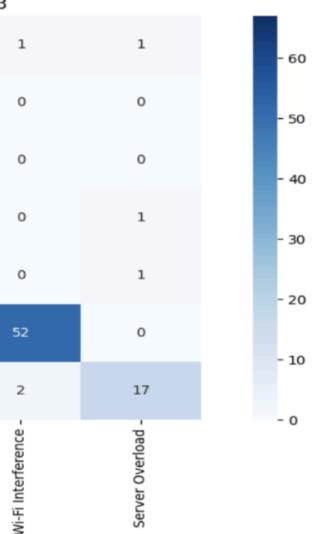
- **Goal:** predict latency, uplink and downlink bandwidth like a speedtest tool
- Methodology:
 - Controlled experiments in the wild
 - Real wifi conditions
 - Control and choice of the pages from Hispar [Ageel and al. IMC'20]
 - 3400 data samples
 - Ground-truth obtained with real Ookla Speedtests


Results

- Mean absolute
 percentage error
 (MAPE)
- Best performance for random forest
- No need for more complex models

Network troubleshooting

- **Goal:** inferring the origin of slow web browsing
- Methodology:
 - Mininet wifi
 - Consideration of 7 types of network anomalies (Wi-Fi medium) availability, Wi-Fi interference, network bandwidth, packet loss, delay, user machine overload, server overload)
 - One anomaly at a time
 - 33 total scenarios
 - 100 web pages replicated locally


Results

- Model accuracy: 96,53%
- Results published in IWCMC 2024 [1]

Network Bandwidth -	48	0	1	0	0	
Network Loss -	0	45	1	0	0	
Network Delay -	1	0	40	0	0	
User's Machine Overload - e	0	0	0	37	0	
Wi-Fi Availability -	0	0	0	1	67	
Wi-Fi Interference -	0	0	0	0	1	
Server Overload -	0	0	0	0	0	
	Network Bandwidth -	Network Loss -	Network Delay -	bet-ine Overload -	Wi-Fi Availability -	

Confusion Matrix of Random Forest With RUMSI > 3

[1] Passive network monitoring and troubleshooting from within the browser: a data-driven approach, Naomi Kirimi, Chadi Barakat, Yassine Hadjadj-Aoul

Ongoing work

- Stressing the methodology in more realistic scenarios
 - Multiple anomalies at a time
 - 43k Network performance scenarios
 - 45k Variable web pages
- Integration of performance estimation and troubleshooting
- Exploration of the methodology in video streaming context

Thank you for your attention

sanaa.ghandi@inria.fr

